pharmasoft.ru
Мексидол

Оригинальный отечественный антигипоксант и антиоксидант прямого действия, оптимизирующий энергообеспечение клеток и увеличивающий резервные возможности организма

mexidol.ru

Где купить?

Мексидол®, 125 мг, таблетки, покрытые пленочной оболочкой.
Общая характеристика лекарственного препарата - инструкция по применению

Мексидол, раствор для внутривенного и внутримышечного введения, 50 мг/мл.
Общая характеристика лекарственного препарата - инструкция по применению

Мексидол® ФОРТЕ 250, 250 мг, таблетки, покрытые пленочной оболочкой.
Общая характеристика лекарственного препарата - инструкция по применению


Инструкции:

Окислительный стресс и его коррекция при неврологических болезнях. Обзор литературы

Статьи

Опубликовано в журнале:
« Неврологическая практика » №2(5) февраль, 2015

А.И. Федин
ГБОУ ВПО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России


Одним из универсальных механизмов жизнедеятельности клеток и процессов, происходящих в межклеточном пространстве, является образование свободных радикалов (СР). СР составляют особый класс химических веществ, различных по своему атомарному составу, но характеризующихся наличием в молекуле непарного электрона. СР являются непременными спутниками кислорода и обладают высокой химической активностью.

Процессы свободнорадикального окисления нужно рассматривать как необходимое метаболическое звено в окислительном фосфорилировании, биосинтезе простагландинов и нуклеиновых кислот; иммунных реакциях. Оксид азота выполняет роль нейромедиатора и принимает участие в регуляции кровотока. СР образуются при перекисном окислении ненасыщенных жирных кислот с регуляцией физических свойств биологических мембран.

С другой стороны, свободнорадикальное окисление является универсальным патофизиологическим феноменом при многих патологических состояниях. Кислород для любой клетки, особенно для нейрона, является ведущим энергоакцептором в дыхательной митохондриальной цепи. Связываясь с атомом железа цитохромоксидазы, молекула кислорода подвергается четырех-электронному восстановлению и превращается в воду. Но в условиях нарушения энергообразующих процессов при неполном восстановлении кислорода происходит образование высокореактивных, а потому токсичных СР или продуктов, их генерирующих.

Образованию СР способствуют многие процессы, сопровождающие жизнедеятельность организма: стрессы, экзогенные и эндогенные интоксикации, влияние техногенных загрязнений окружающей среды и ионизирующего излучения. По данным некоторых авторов, СР участвуют в патогенезе более 100 различных заболеваний. Патологическое действие СР связано прежде всего с их влиянием на структурное состояние и функции биологических мембран. Установлено, что гипоксия и ишемия тканей сопровождаются активацией перекисного окисления липидов. Как известно, в состав клеточных мембран входит большое количество фосфолипидов. При появлении в мембране СР вероятность его взаимодействия с жирной кислотой нарастает по мере увеличения числа кратных связей. Поскольку ненасыщенные жирные кислоты обеспечивают мембранам большую подвижность, то их изменения в результате процессов перекисного окисления липидов приводят как к увеличению вязкости мембран, так и к частичной утрате барьерных функций.

Головной мозг особо чувствителен к гиперпродукции СР и к так называемому окислительному стрессу. Окислительный стресс, ведущий к гиперпродукции СР и деструкции мембран, связанной с активацией фосфолипазного гидролиза, играет в патогенетических механизмах ишемии мозга особо значимую роль. В этих случаях основным фактором, повреждающим митохондриальные, плазматические и микросомальные мембраны, является высокоактивный гидроксильный радикал ОН. Повышенная продукция СР, инициируемая при ишемии мозга арахидоновой кислотой, является одной из причин длительного спазма сосудов и срыва церебральной ауторегуляции, а также прогрессирования постишемического отека и набухания за счет дезинтеграции нейронов и повреждения мембранных насосов. В процессе ишемии вследствие энергодефицита снижается активность ферментов антиоксидантной защиты: супероксиддисмутазы, каталазы и глутатионпероксидазы. Одновременно уменьшается количество практически всех водо- и жирорастворимых антиоксидантов.

Как показано в исследованиях, выполненных на кафедре неврологии ФДПО РНИМУ им. Н.И.Пирогова, окислительный стресс играет значимую и неблагоприятную роль в патогенезе инфаркта мозга, субарахноидального кровоизлияния, внутримозговой гематомы и хронической ишемии мозга.

Как показано в исследованиях, выполненных на кафедре неврологии ФДПО РНИМУ им. Н.И.Пирогова, окислительный стресс играет значимую и неблагоприятную роль в патогенезе инфаркта мозга, субарахноидального кровоизлияния, внутримозговой гематомы и хронической ишемии мозга.

В последние годы окислительный стресс также рассматривается как один из наиболее значимых факторов патогенеза таких нейродегенеративных заболеваний, как болезнь Альцгеймера и другие типы деменций, болезнь Паркинсона, боковой амиотрофический склероз, эпилепсия и рассеянный склероз.

В настоящее время продолжается изучение использования производных янтарной кислоты с целью уменьшения выраженности ишемических повреждений головного мозга. Самым изученным на сегодняшний день препаратом является Мексидол©.

Наряду со свободнорадикальным окислением в процессе функционирования биологических объектов из групп радикалов вырабатываются вещества, обладающие антиоксидантным действием, которые называют стабильными радикалами. Такие радикалы не способны отрывать атомы водорода от большинства молекул, входящих в состав клетки, но могут совершать эту операцию с особыми молекулами, имеющими слабо связанные атомы водорода. Рассматриваемый класс химических соединений получил название антиоксидантов (АО), поскольку механизм их действия основан на торможении свободнорадикальных процессов в тканях. В отличие от нестабильных СР, оказывающих повреждающее действие на клетки, стабильные СР тормозят развитие деструктивных процессов.

Существующая в организме физиологическая антиоксидантная система представляет собой совокупную иерархию защитных механизмов клеток, тканей, органов и систем, направленных на сохранение и поддержание в пределах нормы реакций организма, в том числе в условиях ишемии и стресса. Сохранение окислительно-антиоксидантного равновесия, являющегося важнейшим механизмом гомеостаза живых систем, реализуется как в жидкостных средах организма (кровь, лимфа, межклеточная и внутриклеточная жидкость), так и в структурных элементах клетки, прежде всего в мембранных структурах (плазматических, эндоплазматических и митохондриальных, клеточных мембранах). К антиокислительным внутриклеточным ферментам относятся супероксиддисмутаза, осуществляющая инактивацию супероксидного радикала, и каталаза, разлагающая пероксид водорода.

Известные к настоящему времени биологические и химически синтезированные АО подразделяются на жирорастворимые и водорастворимые.

Жирорастворимые АО локализуются там, где расположены субстраты-мишени атаки СР и пероксидов — наиболее уязвимые для процессов перекисного окисления биологические структуры. К числу таких структур относятся прежде всего биологические мембраны и липопротеины крови, а основными мишенями в них являются ненасыщенные жирные кислоты.

Следует отметить, что для того, чтобы набрать физиологически необходимый минимум АО из продуктов растительного происхождения, удельный их вес при ежедневном питании должен существенно превосходить все остальные компоненты пищи.

В рационе современного питания преобладают рафинированные и технологически обработанные продукты, лишенные ценных природных качеств. Если принять во внимание постоянно увеличивающуюся потребность в АО вследствие воздействия неблагоприятных факторов внешней среды, то становится понятной причина хронического дефицита АО у значительной части населения.

В последние годы изучается действие янтарной кислоты, ее солей и эфиров, представляющих собой универсальные внутриклеточные метаболиты. Янтарная кислота, содержащаяся в органах и тканях, является продуктом 5-й реакции и субстратом 6-й реакции цикла трикарбоновых кислот. Окисление янтарной кислоты в 6-й реакции цикла Кребса осуществляется с помощью сукцинатдегидрогеназы. Выполняя каталитическую функцию по отношению к циклу Кребса, янтарная кислота снижает в крови концентрацию других интермедиатов данного цикла — лактата, пирувата и цитрата, продуцируемых на ранних стадиях гипоксии. Феномен быстрого окисления янтарной кислоты сукцинатдегидрогеназой, сопровождающийся АТФ-зависимым восстановлением пула пиримидиновых динуклеотидов, получил название «монополизация дыхательной цепи», биологическое значение которого заключается в быстром ресинтезе АТФ. В нервной ткани функционирует так называемый аминобутиратный шунт (цикл Робертса), в ходе которого янтарная кислота образуется из аминомасляной кислоты (ГАМК) через промежуточную стадию янтарного альдегида. В условиях стресса и гипоксии образование янтарной кислоты возможно также в реакции окислительного дезаминирования кетаглутаровой кислоты в печени.

Антигипоксическое действие янтарной кислоты обусловлено ее влиянием на транспорт медиаторных аминокислот, а также увеличением содержания в мозге ГАМК при функционировании шунта Робертса. Янтарная кислота в организме в целом нормализует содержание гистамина и серотонина и повышает микроциркуляцию в органах и тканях, прежде всего в тканях мозга, не оказывая влияния на артериальное давление и показатели работы сердца. Противоишемический эффект янтарной кислоты связан не только с активацией сукцинатдегидрогеназного окисления, но и с восстановлением активности ключевого окислительно-восстановительного фермента дыхательной митохондриальной цепи — цитохромоксидазы.

В настоящее время продолжается изучение использования производных янтарной кислоты с целью уменьшения выраженности ишемических повреждений головного мозга. Самым изученным на сегодняшний день препаратом является Мексидол©.

Мексидол© (2-этил-6-метил-3-гидроксипиридина сукцинат), отечественный оригинальный антиоксидант и антигипоксант, создан в НИИ фармакологии РАМН в середине 80-х годов. За разработку и внедрение Мексидола© в клиническую практику группе специалистов в 2003 году присуждена премия правительства РФ.

Мексидол© состоит из двух связанных и функционально значимых соединений: 2-этил-6-метил-3-гидроксипиридина и янтарной кислоты. Наличие 3-гидроксипиридина в структуре Мексидола© обеспечивает комплекс его антиоксидантных и мембранотропных эффектов, способность уменьшать глутаматную эксайтотоксичность, модулировать функционирование рецепторов, что принципиально отличает мексидол от других препаратов, содержащих янтарную кислоту. Наличие сукцината в структуре Мексидола© отличает его от эмоксипина и других производных 3-оксипиридина, поскольку сукцинат функционально значим для многих процессов, протекающих в организме и, в частности, является субстратом для повышения энергетического обмена в клетке.

Сочетание в структуре Мексидола© двух соединений с необходимыми свойствами обеспечивает его хорошую проходимость через гематоэнцефалический барьер, высокую биодоступность и воздействие на различные мишени, следствием чего является широкий спектр эффектов препарата и высокий терапевтический потенциал.

Эффективность действия антиоксиданта, как и других лекарственных веществ, определяется дозой, сроками и способами их введения. В связи с этим рекомендуется курсовое использование инъекционной и таблетированной форм Мексидола©, начиная с 250-500 мг/сутки в/в или в/м в течение 10-15 дней, с последующим переходом на таблетированную форму (125 мг) по 12 таблетке 2-3 раза в день не менее месяца.

Таким образом, Мексидол© обладает широким мультимодальным спектром эффектов, оказывает наряду с антиоксидантной активностью выраженный противоишемический эффект с повышением энергетического потенциала мозга и нейромодулирующее действие на рецепторный аппарат мозга.

Указатель литературы приведен на портале
www.neuronews.ru.

12 июля 2019 г.

Комментарии

(видны только специалистам, верифицированным редакцией МЕДИ РУ)
Если Вы медицинский специалист, или зарегистрируйтесь
Связанные темы:
Черепно-мозговая травма - статьи

МЕДИ РУ в: МЕДИ РУ на YouTube МЕДИ РУ в Twitter МЕДИ РУ вКонтакте Яндекс.Метрика